

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 6907-6909

First synthesis of indirubin N-glycosides (red sugars)

Stefanie Libnow,^a Martin Hein,^{a,*} Dirk Michalik^b and Peter Langer^{a,b,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany ^bLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany

> Received 30 May 2006; revised 3 July 2006; accepted 6 July 2006 Available online 4 August 2006

Abstract—The first indirubin N-glycosides were prepared by reaction of isatine N-glycosides with indoxyl acetate under basic conditions.

© 2006 Elsevier Ltd. All rights reserved.

Glycosylated indole derivatives are of considerable pharmacological relevance (e.g., cancerostatic staurosporine, K-252d, rebeccamycin and the tjipanazoles).^{1,2} Recently, we have reported³ the first synthesis of indigo N-glycosides (blue sugars), which represent analogues of the naturally occurring akashins.⁴ In contrast to pharmacologically inactive parent indigo, the akashins show a considerable activity against various human tumour cell lines. Recently, the first isoindigo glycosides were prepared, which exhibit antiproliferative activity.⁵ Indirubin, the most important isomer of indigo, and several of its derivatives exhibit considerable antiproliferative activity.^{6,7} Herein, we report what are, to the best of our knowledge, the first syntheses of indirubin N-glycosides.

N-(2,3,4-Tri-*O*-acetyl-α,β-L-rhamnopyranosyl)isatine (4α ,β) was prepared from L-rhamnose.⁸⁻¹² Simple indirubins have been previously prepared by reaction of a methanolic solution of indoxyl acetate with isatines.¹³ The reaction of the pure beta anomer 4β with indoxyl acetate resulted in the formation of the desired deprotected *N*-(β-L-rhamnopyranosyl)indirubin 5β in up to 77% yield (Scheme 1).¹⁴ During the optimisation of this reaction, the use of an excess of sodium carbonate proved to be important to achieve a complete cleavage of the acetyl protective groups of the sugar moiety.

Following this procedure, the anomerically pure indirubin glycosides of D-glucose (product 6β), D-ribose (prod-

Scheme 1. Synthesis of N-(β -L-rhamnopyranosyl)indirubin 5 β . Reagents and conditions: (i) PhNH₂, EtOH, rt, 12 h; (ii) Ac₂O, pyridine, $0 \rightarrow 4$ °C, 8 - 12 h; (iii) oxalyl chloride, AlCl₃, 55 °C, 1.5 h; (iv) Na₂CO₃, MeOH, rt, 4 h.

uct 7β), D-galactose (8β), and D-mannose (9β) were successfully prepared in good yields starting from the

Keywords: *N*-Glycosyl anilines; *N*-Glycosyl isatines; Indirubin; N-Heterocycles; N-Glycosides.

^{*} Corresponding authors. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.024

Scheme 2. Synthesis of *N*-(β -D-glucopyranosyl)indirubin 6 β , *N*-(β -D-ribopyranosyl)indirubin 7 β , *N*-(β -D-galactopyranosyl)indirubin 8 β and *N*-(β -D-mannopyranosyl) indirubin 9 β ; the yields, based on the corresponding *N*- β -glycosyl isatine, are given in brackets.

corresponding *N*-glycosyl isatines (Scheme 2). In case of L-rhamnose, both anomeric glycosyl isatines could be isolated after cyclisation of $3\alpha,\beta$ with oxalyl chloride. In contrast, only traces of α -anomers were detected for all other sugars. In these cases, isomerically enriched β -anomers ($\beta/\alpha > 5:1$) of the corresponding acetylated *N*-glycosyl anilines were employed in the cyclisation reaction. However, the β/α -ratio seems to slightly vary during the course of the reaction; otherwise, higher amounts of the α -anomeric *N*-glycosyl isatines would have been detected after the reaction. The determination of the anomeric configuration of the products was carried out by two-dimensional NMR spectroscopy (¹H, ¹H COSY, ¹H, ¹H NOESY, ¹³C, ¹H COR, HMBC).

In conclusion, we have reported the first syntheses of deprotected N-glycosides of indirubin (red sugars).

Acknowledgements

Financial support by the state of Mecklenburg-Vorpommern (scholarship for S.L.) is gratefully acknowledged.

References and notes

- Review: Gribble, G.; Berthel, S. In *Studies in Natural Products Chemistry*; Elsevier Science: New York, 1993; Vol. 12, pp 365–409.
- Isolation of staurosporin: (a) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275–282; synthesis: (b) Link, J. T.; Raghavan, S.; Gallant, M.; Danishefsky, S. J.; Chou, T. C.; Ballas, L. M. J. Am. Chem. Soc. 1996, 118, 2825–2842; pharmacological activity: (c) Yamashita, Y.; Fujii, N.; Murakata, C.; Ashizawa, T.; Okabe, M.; Nakano, H. Biochemistry 1992, 31, 12069–12075.

- (a) Hein, M.; Michalik, D.; Langer, P. Synthesis 2005, 20, 3531–3534; (b) Hein, M.; Nguyen, T. B. P.; Michalik, D.; Görls, H.; Lalk, M.; Langer, P. Tetrahedron Lett. 2006, 47, 5741.
- Maskey, R. P.; Grün-Wollny, I.; Fiebig, H. H.; Laatsch, H. Angew. Chem. 2002, 114, 623–625; Angew. Chem., Int. Ed. 2002, 41, 597–599.
- (a) Sassatelli, M.; Saab, E.; Anizon, F.; Prudhomme, M.; Moreau, P. *Tetrahedron Lett.* 2004, 45, 4827–4830; (b) Sassatelli, M.; Bouchikhi, F.; Messaoudi, S.; Anizon, F.; Debiton, E.; Barthomeuf, C.; Prudhomme, M.; Moreau, P. *Eur. J. Med. Chem.* 2006, 41, 88–100.
- Moon, M. J.; Lee, S. K.; Lee, J.-W.; Song, W. K.; Kim, S. W.; Kim, J. I.; Cho, C.; Choi, S. J.; Kim, Y.-C. *Bioorg. Med. Chem.* 2006, 14, 237–246.
- 7. Indirubin, the red shade of indigo. In *Life in Progress*; Meijer, L., Guyard, N., Skaltsounis, L. A., Eisenbrand, G., Ed.; Station Biologique, Roscoff, in press.
- Chavis, C.; De Gourcy, C.; Dumont, F.; Imbach, J.-L. Carbohydr. Res. 1983, 113, 1–20.
- Douglas, J. G.; Honeyman, J. J. Chem. Soc. 1955, 3674– 3680.
- Preobrazhenskaya, M. N.; Yartseva, I. V.; Ektova, L. V. Nucleic Acid Chem. 1978, 2, 725–727.
- Yartseva, I. V.; Ektova, L. V.; Preobrazhenskaya, M. N. Bioorg. Khim. 1975, 1, 189–194.
- 12. Synthesis of isatine glycosides: To a stirred solution of the acetylated rhamnosyl aniline in oxalyl chloride (about 10 equiv), an equivalent amount of anhydrous aluminium chloride was added. The mixture was stirred for 1.5 h at 55 °C (TLC control). After cooling to 0 °C, ice water was added to the stirred solution. The mixture was extracted with EtOAc (3×). The combined organic layers were washed with a saturated aqueous solution of sodium bicarbonate and with water, dried (sodium sulfate) and filtered. The filtrate was concentrated in vacuo and the residue was purified by column chromatography to give 4α , β . Starting with 3α , β (1.24 g, 3.39 mmol, $\beta/\alpha = 2.5$:1), 4β (320 mg, 23%) and 4α , β (570 mg, 40%, $\beta/\alpha = 3$:1) were isolated after column chromatography (heptane/EtOAc = 3:1).

The syntheses of *N*-(2,3,4,6-tetra-*O*-acetyl-β-Dglucopyranosyl)isatine,¹⁰ N-(2,3,4-tri-O-acetyl-β-D-ribopyranosyl)isatine,¹¹ N-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)isatine and *N*-(2,3,4,6-tetra-*O*-acetyl-β-Dmannopyranosyl)isatine were carried out following the procedure as described above. In contrast, isomerically enriched β -anomers ($\beta/\alpha > 5:1$) were employed as starting materials. Starting with N-(2,3,4,6-tetra-O-acetyl- α , β -Dglucopyranosyl)aniline (1.00 g, 2.36 mmol), N-(2,3,4,6tetra-O-acetyl-β-D-glucopyranosyl)isatine was isolated (0.34 g, 30%). N-(2,3,4-Tri-O-acetyl- α , β -D-ribopyranosyl)aniline (0.75 g, 2.13 mmol) was transformed into N-(2,3,4-tri-O-acetyl- β -D-ribopyranosyl)isatine (0.18 g. 21%). Starting with N-(2,3,4,6-tetra-O-acetyl- α , β -D-galactopyranosyl)aniline (0.80 g, 1.89 mmol), N-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)isatine was isolated (0.47 g, N-(2,3,4,6-Tetra-O-acetyl-α,β-D-mannopyrano-52%). syl)aniline (1.00 g, 2.36 mmol) was transformed into N-(2,3,4,6-tetra-O-acetyl-β-D-mannopyranosyl)isatine (0.24 g, 21%). All products were purified by column chromatography (heptane/EtOAc = 2:1).

- (a) Russell, G. A.; Kaupp, G. J. Am. Chem. Soc. 1969, 91, 3851–3859;
 (b) Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A.-L.; Myrianthopoulos, V.; Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S. M.; Pearl, L.; Leost, M.; Greengard, P.; Meijer, L. J. Med. Chem. 2004, 47, 935–946.
- 14. Synthesis of indirubin glycosides: To a MeOH solution of the acetylated glycosyl isatine, indoxyl acetate (1.0 equiv)

and sodium carbonate (4.0 equiv) were added under argon atmosphere. The mixture was stirred for 1.5-4 h at 20 °C. The yellow to orange colour of the solution changed from red to violet. The mixture was neutralised with IR 120 (H^{+}) , filtered and the filtrate was concentrated under reduced pressure. Column chromatography of the residue gave the indirubin glycosides as red to violet solids: Starting with 4β (300 mg, 0.715 mmol) (reaction time: 4 h), Starting with **4** β (300 mg, 0./15 mmol) (reaction time: 4 n), **5** β (224 mg, 77%) was isolated by column chromatography (CHCl₃/MeOH, 20:1 \rightarrow 10:1). ¹H NMR (500.13 MHz, DMSO) δ : 10.08 (s, 1H, NH); 8.80 (dd, 1H, ³ $J_{4,5} =$ 7.9 Hz, ⁴ $J_{4,6} =$ 1.0 Hz, H-4); 7.67 (d, 1H, ³ $J_{11,12} =$ 7.6 Hz, H-11); 7.64 (d, 1H, ³ $J_{6,7} =$ 7.9 Hz, H-7); 7.60 (dt, 1H, ³ $J_{13,14} =$ 7.9 Hz, ³ $J_{12,13} =$ 7.6 Hz, ⁴ $J_{11,13} =$ 1.0 Hz, H-13); 7.42 (d, 1H, ³ $J_{13,14} =$ 7.9 Hz, ⁴ $J_{4,6} =$ 1.0 Hz, H-6); 7.06– 7.02 (m, 2H, H-5 12): 5.62 (s, (br), 1H, H-15): 5.12 (d, 1H) 7.02 (m, 2H, H-5,12); 5.62 (s (br), 1H, H-15); 5.12 (d, 1H, ${}^{3}J_{16,OH} = 5.0 \text{ Hz}, OH_{(16)}; 4.96 \text{ (d, 1H, }{}^{3}J_{18,OH} = 5.0 \text{ Hz}, OH_{(16)}; 4.96 \text{ (d, 1H, }{}^{3}J_{18,OH} = 5.0 \text{ Hz}, OH_{(18)}; 4.85 \text{ (d, 1H, }{}^{3}J_{17,OH} = 6.0 \text{ Hz}, OH_{(17)}; 3.86 \text{ (m, 1H, H-16)}; 3.50 \text{ (m, 1H, H-17)}; 3.41-3.35 \text{ (m, 2H, H-18,19)}; 1.27 \text{ (d, 3H, }{}^{3}J_{19,20} = 5.8 \text{ Hz}, Me_{(20)}; {}^{13}\text{C} \text{ NMR}$ (125.8 MHz, DMSO) 5: 188.7 (C-10); 168.5 (C-2); 152.4 (C-14a); 140.9 (C-7a); 138.8 (C-9); 137.3 (C-13); 128.5 (C-6); 124.6 (C-11); 123.7 (C-4); 121.6, 121.5 (C-5,12); 120.7 (C-3a); 119.2 (C-10a); 114.9 (C-7); 113.6 (C-14); 105.5 (C-3); 82.3 (C-15); 75.5 (C-18); 73.3 (C-17); 72.0 (C-16); 71.5 (C-19); 18.3 (C-20). HRMS (ESI): m/z calcd for $C_{22}H_{20}N_2NaO_6$ ([M+Na]⁺): 431.1214; found: 431.1216.

Compound 6β: N-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)isatine (160 mg, 0.335 mmol) was converted according to the above mentioned procedure (reaction duration: 4 h). Column chromatography (CHCl₃-MeOH, 20:1 \rightarrow 10:1) yielded **6** β (100 mg, 70%). Compound **7** β : N-(2,3,4-tri-O-acetyl-β-D-ribopyranosyl)isatine (120 mg, 0.296 mmol) was converted according to the above mentioned procedure (reaction duration: 1.5 h). Column chromatography (CHCl₃-MeOH, 20:1 \rightarrow 10:1) yielded 7 β (95 mg, 81%). Compound 8β: N-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)isatine (200 mg, 0.419 mmol) was converted according to the above mentioned procedure (reaction duration: 3 h). Column chromatography (CHCl₃-MeOH, 20:1 \rightarrow 10:1) yielded 8 β (130 mg, 73%). Compound 9β: N-(2,3,4,6-tetra-O-acetyl-β-D-mannopyranosyl)isatine (190 mg, 0.398 mmol) was converted according to the above mentioned procedure (reaction duration: 3 h). Column chromatography (CHCl₃-MeOH, $20:1 \rightarrow 10:1$) yielded **9** β (100 mg, 59%).